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Introduction
Spinel is a highly valued gemstone, with its color and quality 
in'uenced by trace-element chemistry and crystal structure. 
Accurate determination of its geographic origin is crucial 
for gemmological authentication, scienti(c research, and 
maintaining supply-chain integrity. Raman spectroscopy 
provides a non-destructive analytical approach, offering 
vibrational (ngerprints that re'ect both the crystal lattice 
and impurity-related features. However, manual interpreta-
tion is time-consuming and susceptible to operator bias, 
particularly when dealing with large datasets or subtle spec-
tral variations. To address these challenges, we present an 
end-to-end automated pipeline that integrates spectral pre-
processing, feature extraction, and chemometric analysis. 
Machine learning (ML) models are then applied to classify 
spinel samples according to their geographic origin. The per-
formance of this approach is demonstrated using both red 
and blue spinels from three major deposits.

Materials and Methods
A total of 315 spinel samples (Figure 1) were sourced from 
local, trusted dealers and veri(ed by gemmological means. 
Red spinel (MgAl₂O₄; n = 154) originated from Mogok 
(Myanmar), Luc Yen (Vietnam) and Lukande (Tanzania), 
while blue samples (n = 161) comprised spinel (MgAl₂O₄) 
from Luc Yen and Lukande and gahnite (ideally ZnAl₂O₄; 
n = 52) from Jemaa (Nigeria). Each sample was polished to 
present at least one 'at surface for Raman analysis. Raman 
spectra were collected on a confocal Renishaw inVia Raman 
microscope equipped with a 50× objective (NA 0.50) using 
a 785 nm excitation laser. Three accumulations of 10s each 
were acquired over 200–1000 cm_1 with 1 cm_1 spectral res-
olution, conditions veri(ed to avoid local heating (no peak 
drift between successive scans). Raw spectra were exported 
as CSV (les and processed via the automated data process-
ing pipeline. 

Figure 1. Representative 
spinel samples used in this 
study, with weights ranging 
from 0.37 to 2.70 carats. 
(Photo by M. Seneewong Na 
Ayutthaya)
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Automated Data Processing Pipeline
Our data-processing pipeline was implemented in Python 
3.12 and proceeds as follows. First, Raman spectra are 
smoothed using a Savitzky–Golay (lter (window length 7, 
polynomial order 3) to suppress high-frequency noise while 
preserving peak shapes. The smoothed spectra are then 
baseline-corrected via Asymmetric Least Squares (ALS) 
algorithm with λ = 10⁷ and p = 0.01, followed by max-nor-
malization (I/Imax) to remove intensity scale e2ects. Next, 
we isolate the four vibrational bands at 310, 405, 665, and 
765 cm_1 and (t each with a Lorentzian pro(le (accepting 
(ts only if R² ≥ 0.95) to extract the full width at half maxi-
mum (FWHM). The resulting FWHM values, together with 
two dimensionless ratios (e.g., 405/665 and 405/765), are 
assembled into feature vectors and visualized in bi-scat-
ter plots to assess natural clustering by geographic origin. 
Finally, we train both an arti(cial neural network (ANN) and 
a random forest (RF) models using 10-fold cross-validation 
and a 20% held-out test set (red spinel n = 28; blue spinel 
n = 30), optimize hyperparameters by grid search, and report 
overall accuracy, macro F1-score, and mean cross-validation 
accuracy (mean CV).

Results and Discussion
The full dataset of 315 spectra was processed on a MacBook 
Pro (M1 Pro, 16 GB RAM) in 149 seconds, averaging 0.47 sec-
onds per spectrum. FWHM-based plots reveal well-de(ned 
clusters corresponding to geographic provenance. For red 

spinel, plotting the FWHM of the 405 cm_1 band against that 
of the 665 cm_1 band distinguishes samples from Myanmar 
(MM), Vietnam (VN), and Tanzania (TZ), though some over-
lap occurs between MM and VN. In blue spinel (MgAl₂O₄), 
the 405 cm_1 and 665 cm_1 modes are decisive. Nigerian 
gahnite (ZnAl₂O₄) occupies a distinct (eld due to homolo-
gous peak shifts to approximately 415 cm_1 and 657 cm_1. 
Applying adaptive (tting windows of ±10 cm_1 further iso-
lates gahnite without disturbing the true-spinel clusters (Fig. 
2). While gahnite is also distinguishable from blue Mg–Al 
spinels by RI, SG, and Zn-rich chemistry, Raman provides 
a complementary method, especially for small or mounted 
stones. These FWHM shifts likely re'ect variations in A–B 
site inversion and mass-related frequency shifts from Mg²+ 

substitution with heavier Zn²+  (Malavasi et al., 2002; Wang 
et al., 2020). Additionally, the separation—and remaining 
overlap—between TZ and VN blue spinels may be in'uenced 
by Fe/Co variations a2ecting site distortion (Furuya, 2023). 
Classi(cation models trained on FWHM features performed 
strongly, as summarized in Table I. Confusion matrix analysis 
indicates most misclassi(cations occurred between MM and 
VN red spinels, and between TZ and VN blue ones, re'ecting 
partially overlapping geological and chemical characteris-
tics (Chauviré et al., 2015; Chankhantha et al., 2020; Krzem-
nicki et al. 2023, Wu et al., 2023). Overall, these (ndings 
demonstrate that deposit-speci(c FWHM features provide 
an e2ective foundation for automated, machine learning–
based provenance determination of spinel.

Figure 2. Scatter plots illustrating FWHM-based feature 
distributions for classi(cation: (left) red spinel samples from 

Myanmar, Vietnam, and Tanzania; (right) blue spinel  
(Vietnam, Tanzania) and gahnite (Nigeria). 
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Conclusion
We present an automated, high-throughput work'ow for 
Raman spectral processing and provenance classi(cation of 
blue and red spinel. By using FWHM of key vibrational bands 
as features, the pipeline captures subtle lattice variations 
associated with geographic origin. This approach achieves 
over 90 % classi(cation accuracy on the current dataset and 
signi(cantly reduces analysis time, enabling scalable and 
reproducible gemmological assessments. The strong per-
formance of FWHM-based features highlight their sensitivity 
to crystallographic disorder and trace-element chemistry—
factors that are critical for provenance di2erentiation. Build-
ing on these results, future work will expand the geographic 
diversity of the spinel dataset and extend the pipeline to a 
broader range of gemstone species.

Limitations and Outlook
The current model is calibrated using a limited set of depos-
its; incorporating additional localities will likely introduce 
greater spectral variability, necessitating model retraining 
or, at minimum, site-speci(c recalibration. Broader datasets 
may also increase class overlap, which could complicate clus-
ter separation and reduce classi(cation accuracy. Further-
more, heating above ~800 °C has been shown to broaden the 
same Raman bands (Saeseaw et al., 2009) used for prove-
nance discrimination, potentially obscuring geographic sig-
nals. As a result, Raman-based FWHM classi(cation should 
be integrated with complementary techniques—such as 
trace-element analysis—to disentangle provenance from 
heat treatment e2ects and establish a more robust, multi-
modal framework for origin determination.
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Dataset Model Accuracy Macro F1 Mean CV
Misclassi)ed 

samples

Red spinel

ANN 93 93 89% ± 6.6%
2/28: (1MM→VZ, 

1VN→TZ)

RF 93 93 88% ± 7.1%
2/28: (1MM→VZ, 

1VN→TZ)

Blue spinel & 
gahnite

ANN 97 97 95% ± 4.0% 1/30: (1VN→TZ)

RF 93 94 96% ± 4.1% 2/30: (2VN→TZ)

Table I Performance summary of ML models applied to red and 
blue spinel classi(cation
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